
Design, Performance and Scalability of a Replica
Location Service

Ann L. Chervenak

Robert Schuler, Shishir Bharathi

USC Information Sciences Institute

Replica Management in Grids

Data intensive applications produce terabytes or
petabytes of data

Hundreds of millions of data objects

Replicate data at multiple locations for reasons of:

Fault tolerance
Avoid single points of failure

Performance
Avoid wide area data transfer latencies
Achieve load balancing

A Replica Location Service
• A Replica Location Service (RLS) is a distributed

registry that records the locations of data copies and
allows replica discovery

Must perform and scale well: support hundreds of
millions of objects, hundreds of clients

E.g., LIGO (Laser Interferometer Gravitational Wave
Observatory) Project

RLS servers at 8 sites
Maintain associations between 3 million logical file
names & 30 million physical file locations

RLS is one component of a Replica Management system
Other components include consistency services,
replica selection services, reliable data transfer, etc.

Talk Outline

Replica Location Service Overview

An RLS Implementation

Performance and Scalability Study
Individual server performance

Updates among distributed servers

In Development: A Data Publication Service

Research: A Peer-to-Peer RLS Implementation

Summary and ongoing/future work

A Replica Location Service

A Replica Location Service (RLS) is a distributed
registry that records the locations of data copies and
allows discovery of replicas

RLS maintains mappings between logical identifiers and
target names

An RLS framework was designed in a collaboration
between the Globus project and the DataGrid project
(SC2002 paper)

RLS Framework

LRC LRC LRC

RLI
Replica Location Indexes

• Local Replica
Catalogs (LRCs)
contain consistent
information about
logical-to-target
mappings

RLI

LRC LRC

Local Replica Catalogs

• Replica Location Index (RLI) nodes aggregate information
about one or more LRCs

• LRCs use soft state update mechanisms to inform RLIs
about their state: relaxed consistency of index

• Optional compression of state updates reduces
communication, CPU and storage overheads

• Membership service registers participating LRCs and RLIs
and deals with changes in membership

Replica Location Service In Context

Replica Location Service Reliable Data
Transfer Service

GridFTP

Reliable Replication Service

Replica Consistency Management Services

Metadata
Service

The Replica Location Service is one component in a layered
data management architecture

Provides a simple, distributed registry of mappings

Consistency management provided by higher-level services

Components of RLS Implementation
Common server implementation for
LRC and RLI

Front-End Server
Multi-threaded
Written in C
Supports GSI Authentication using
X.509 certificates

Back-end Server
MySQL or PostgreSQL Relational
Database (later versions support
Oracle)
No database back end required for
RLIs using Bloom filter compression

Client APIs: C and Java
Client Command line tool

DB

LRC/RLI Server

ODBC (libiodbc)

myodbc

mySQL Server

clientclient

RLS Implementation Features
Two types of soft state updates from LRCs to RLIs

Complete list of logical names registered in LRC
Compressed updates: Bloom filter summaries of LRC

Immediate mode
Incremental updates

User-defined attributes
May be associated with logical or target names

Partitioning (without bloom filters)
Divide LRC soft state updates among RLI index
nodes using pattern matching of logical names

Currently, static membership configuration only
No membership service

Alternatives for Soft State
Update Configuration

LFN List
Send list of Logical Names stored on LRC
Can do exact and wildcard searches on RLI
Soft state updates get increasingly expensive as
number of LRC entries increases

space, network transfer time, CPU time on RLI
E.g., with 1 million entries, takes 20 minutes to update
mySQL on dual-processor 2 GHz machine (CPU-limited)

Bloom filters
Construct a summary of LRC state by hashing logical
names, creating a bitmap
Compression
Updates much smaller, faster
Supports higher query rate
Small probability of false positives (lossy compression)
Lose ability to do wildcard queries

Immediate Mode for
Soft State Updates

Immediate Mode
Send updates after 30 seconds (configurable) or after
fixed number (100 default) of updates
Full updates are sent at a reduced rate
Tradeoff depends on volatility of data/frequency of
updates
Immediate mode updates RLI quickly, reduces period of
inconsistency between LRC and RLI content

Immediate mode usually sends less data
Because of less frequent full updates

Usually advantageous
An exception would be initially loading of large
database

globus-rls-admin:
Command Line Administration Tool

globus-rls-admin option [rli] [server]

-p: verifies that server is responding

-A: add RLI to list of servers to which LRC sends
updates

-s: shows list of servers to which updates are sent

-c all: retrieves all configuration options

-S: show statistics for RLS server

-e: clear LRC database

Examples of
globus-rls-admin commands

% globus-rls-admin -p rls://smarty
ping rls://smarty: 0 seconds

% globus-rls-admin -s rls://smarty
rls://smarty.isi.edu:39281 all LFNs

% globus-rls-admin -S rls://smarty
Version: 2.0.9
Uptime: 383:27:39
LRC stats
update method: lfnlist
update method: bloomfilter
updates lfnlist: rls://smarty.isi.edu:39281 last 01/21/04

11:09:35
lfnlist update interval: 3600
bloomfilter update interval: 900
numlfn: 10719
numpfn: 33560
nummap: 33560

RLI stats
updated by: rls://smarty.isi.edu:39281 last 01/21/04 11:35:45
updated by: rls://sukhna.isi.edu:39281 last 01/20/04 17:33:17
updated via lfnlists
numlfn: 11384
numlrc: 2
nummap: 15363

globus-rls-cli:
Client Command Line Tool

globus-rls-cli [-c] [-h] [-l reslimit] [-s] [-t
timeout] [-u] [command] rls-server

If command is not specified, enters interactive mode

Create an initial mapping from a logical name to a
target name:

globus-rls-cli create logicalName targetName1
rls://myrls.isi.edu

Add a mapping from same logical name to a second
replica/target name:

globus-rls-cli add logicalName targetName2
rls://myrls.isi.edu

Examples of simple
create, add and query operations

% globus-rls-cli create ln1 pn1 rls://smarty

% globus-rls-cli query lrc lfn ln1 rls://smarty
ln1: pn1

% globus-rls-cli add ln1 pn2 rls://smarty

% globus-rls-cli query lrc lfn ln1 rls://smarty
ln1: pn1
ln1: pn2

globus-rls-cli Attribute Functions

Attribute Functions

globus-rls-cli attribute add <object> <attr> <obj-
type> <attr-type>

Add an attribute to an object
object should be the lfn or pfn name
obj-type should be one of lfn or pfn
attr-type should be one of date, float int, or string

attribute modify <object> <attr> <obj-type>
<attr-type>

attribute query <object> <attr> <obj-type>

globus-rli-client Bulk Operations

bulk add <lfn> <pfn> [<lfn> <pfn>
Bulk add lfn, pfn mappings

bulk delete <lfn> <pfn> [<lfn> <pfn>
Bulk delete lfn, pfn mappings

bulk query lrc lfn [<lfn> ...]
Bulk query lrc for lfns

bulk query lrc pfn [<pfn> ...]
Bulk query lrc for pfns

bulk query rli lfn [<lfn> ...]
Bulk query rli for lfns

Others: bulk attribute adds, deletes, queries, etc.

Examples of Bulk Operations

% globus-rls-cli bulk create ln1 pn1 ln2 pn2 ln3 pn3
rls://smarty

% globus-rls-cli bulk query lrc lfn ln1 ln2 ln3
rls://smarty

ln3: pn3

ln2: pn2

ln1: pn1

Registering a mapping using C API

globus_module_activate(GLOBUS_RLS_CLIENT_MODULE)

globus_rls_client_connect (serverURL, serverHandle)

globus_rls_client_lrc_create (serverHandle, logicalName1,
targetName1)

globus_rls_client_lrc_add (serverHandle, logicalName1,
targetName2)

globus_rls_client_close (serverHandle)

Registering a mapping using Java API

RLSClient rls = new RLSClient(URLofServer);

RLSClient.LRC lrc = rls.getLRC();

lrc.create(logicalName1, targetName1);

lrc.add(logicalName1, targetName2);

rls.Close();

Talk Outline

Replica Location Service Overview

An RLS Implementation

Performance and Scalability Study
Individual server performance

Updates among distributed servers

In Development: A Data Publication Service

Research: A Peer-to-Peer RLS Implementation

Summary and ongoing/future work

Performance Testing
Extensive performance testing reported in HPDC 2004
paper

Performance of individual LRC (catalog) or RLI (index)
servers

Client program submits operation requests to server
Performance of soft state updates

Client LRC catalogs sends updates to index servers

Software Versions:
Replica Location Service Version 2.0.9
Globus Packaging Toolkit Version 2.2.5
libiODBC library Version 3.0.5
MySQL database Version 4.0.14
MyODBC library (with MySQL) Version 3.51.06

Testing Environment

Local Area Network Tests
100 Megabit Ethernet
Clients (either client program or LRCs) on cluster:
dual Pentium-III 547 MHz workstations with 1.5
Gigabytes of memory running Red Hat Linux 9
Server: dual Intel Xeon 2.2 GHz processor with 1
Gigabyte of memory running Red Hat Linux 7.3

Wide Area Network Tests (Soft state updates)
LRC clients (Los Angeles): cluster nodes
RLI server (Chicago): dual Intel Xeon 2.2 GHz
machine with 2 gigabytes of memory running Red
Hat Linux 7.3

LRC Operation Rates (MySQL Backend)
Operation Rates,

LRC with 1 million entries in MySQL Back End,
Multiple Clients, Multiple Threads Per Client,

 Database Flush Disabled

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Number Of Clients

O
pe

ra
tio

ns
 P

er

se
co

nd

Query Rate w ith 10 threads per client
Add Rate w ith 10 threads per client
Delete Rate w ith 10 threads per client

• Up to 100 total
requesting
threads

• Clients and
server on LAN

• Query: request
the target of a
logical name

• Add: register a
new <logical
name, target>
mapping

• Delete a
mapping

Comparison of LRC to
Native MySQL Performance

Operation Rates for MySQL Native Database,
1 Million entries in the mySQL back end,

Multiple Clients, Multiple Threads Per Client,
Database flush disabled

0
500

1000
1500
2000
2500
3000
3500
4000

1 2 3 4 5 6 7 8 9 10

Number of Clients

O
pe

ra
tio

ns
 p

er

se
co

nd

Query Rate w ith 10 threads per client
Add Rate w ith 10 threads per client
Delete Rate w ith 10 threads per client

LRC Overheads

Highest for
queries: LRC
achieve 70-80%
of native rates

Adds and deletes:
~90% of native
performance for
1 client (10
threads)

Similar or better
add and delete
performance with
10 clients (100
threads)

Bulk Operation Performance
For user convenience,
server supports bulk
operations

E.g., 1000 operations
per request

Combine adds/deletes
to maintain approx.
constant DB size

For small number of
clients, bulk operations
increase rates

E.g., 1 client
(10 threads) performs
27% more queries,
7% more adds/deletes

Bulk vs. Non-Bulk Operation Rates,
1000 Operations Per Request,
10 Request Threads Per Client

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

Number of clients

O
pe

ra
tio

n
R

at
es

Bulk Query
Bulk Add/Delete
Non-bulk Query
Non-bulk Add
Non-bulk Delete

Uncompressed Soft State Updates

Time for Uncompressed LFN Updates in LAN to
Single RLI as Size & Number of LRCs Increase

1

10

100

1000

10000

1 2 3 4 5 6 7 8
Number of LRCs

A
ve

ra
ge

 T
iim

e
fo

r U
pd

at
e

(s
ec

on
ds

)

10K entries in LRC

100K entries in LRC

1M entries in LRC

• Perform poorly
when multiple
LRCs update RLI

•E.g., 6 LRCs with
1 million entries
updating RLI,
average update
~5102 seconds in
Local Area

• Limiting factor:
rate of updates to
an RLI database

• Advisable to use
incremental
updates

Bloom Filter Compression

Construct a summary of each LRC’s state by hashing
logical names, creating a bitmap
RLI stores in memory one bitmap per LRC

Advantages:
Updates much smaller, faster
Supports higher query rate

Satisfied from memory rather than database

Disadvantages:
Lose ability to do wildcard queries, since not sending
logical names to RLI
Small probability of false positives (configurable)

Relaxed consistency model

Bloom Filter Performance:
Single Wide Area Soft State Update

(Los Angeles to Chicago)

50 million91.66.85 million
entries

10 million18.41.671 million
entries

1 million2Less than 1100,000
entries

Size of bloom
filter (bits)

Avg. time for
initial bloom
filter
computation
(seconds)

Avg. time to
send soft
state update
(seconds)

LRC
Database
Size

Scalability of
Bloom Filter Updates

Average Time to Perform
Continuous Bloom Filter Updates From

Increasing Number of LRC Clients

0
2
4
6
8

10
12
14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number of LRC Clients

A
ve

rg
e

C
lie

nt

U
pd

at
e

Ti
m

e

14 LRCs with 5 million mappings send Bloom filter updates
continuously in Wide Area (unlikely, represents worst case)
Update times increase when 8 or more clients send updates
2 to 3 orders of magnitude better performance than
uncompressed (e.g., 5102 seconds with 6 LRCs)

Bloom Filter Compression
Supports Higher RLI Query Rates

RLI Bloom Filter Query rate,
Each Bloom Filter has 1 Million Mappings,
Multiple Clients with 3 Threads per Client

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9 10

Number of Clients

A
ve

ra
ge

 Q
ue

ry
 ra

te

Query Rate w ith 3 threads per client. 1 Bloom filter at RLI
Query Rate w ith 3 threads per client. 10 Bloom filters at RLI
Query Rate w ith 3 threads per client. 100 Bloom filters at RLI

• Uncompressed
updates: about
3000 queries per
second

• Higher rates
with Bloom filter
compression

• Scalability
limit: significant
overhead to
check 100 bit
maps

• Practical
deployments:
<10 LRCs
updating an RLI

RLS Performance Summary
Individual RLS servers perform well and scale up to

Millions of entries

One hundred requesting threads

Soft state updates of the distributed index scale well
when using Bloom filter compression

Uncompressed updates slow as size of catalog grows

Immediate mode is advisable

Talk Outline

Replica Location Service Overview

An RLS Implementation

Performance and Scalability Study
Individual server performance

Updates among distributed servers

In Development: A Data Publication Service

Research: A Peer-to-Peer RLS Implementation

Summary and ongoing/future work

WS-RF Data Publishing
and Replication Service

Being developed for the Tech Preview of GT4.0 release
Based in part on Lightweight Data Replicator system
(LDR) developed by Scott Koranda from U. Wisconsin at
Milwaukee

Ensures that a specified set of files exist on a storage
site

Compares contents of a local file catalog with a list of
desired files
Transfers copies of missing files other locations
Registers them in the local file catalog

Uses a pull-based model
Localizes decision making
Minimizes dependency on outside services

Publishing and Replication Service (Cont.)
WS-RF interface allows a client to explicitly specify the
list of files that should exist at the local site

associates priorities with files should they need to be
replicated from another site
allows clients to remove files from this list

Each storage site uses the Replica Location Service
(RLS) to determine

what files from the desired set are missing from the local
storage system
where missing files exist elsewhere in the Grid

Missing files are replicated locally
Issue requests to pull data to the local site from remote
copies using the Reliable File Transfer Service (RFT)

After files are transferred, they are registered in the
Local Replica Catalog

Talk Outline

Replica Location Service Overview

An RLS Implementation

Performance and Scalability Study
Individual server performance

Updates among distributed servers

In Development: A Data Publication Service

Research: A Peer-to-Peer RLS Implementation

Summary and ongoing/future work

Motivation for a Peer-to-Peer RLS

Each RLS deployment is statically configured
If upper level RLI fails, the lower level LRCs need to be
manually redirected

More automated and flexible membership management is
desirable for:

larger deployments
dynamic environments where servers frequently join and
leave

We use a peer-to-peer approach to provide a distributed RLI
index for {logical-name, LRC} mappings with properties of:

self-organization

greater fault-tolerance and availability

improved scalability for large number of RLS nodes

Peer-to-Peer Replica
Location Service (P-RLS) Design

Work of Min Cai, Ph.D. student

A P-RLS server consists of:
An unchanged Local Replica Catalog (LRC) to maintain
consistent {logical-name, target-name} mappings
A Peer-to-Peer Replica Location Index node (P-RLI)

The P-RLS design uses a Chord overlay network to self-
organize P-RLI servers

Chord is a distributed hash table that supports scalable key
insertion and lookup
Each node has log (N) neighbors in a network of N nodes
A key is stored on its successor node (first node with ID equal
to or greater than key)
Key insertion and lookup in log (N) hops
Stabilization algorithm for overlay construction and topology
repair

An Example of Chord Network

N4

N20

N24
N40

N56

N60

Finger Table

N4+1 => N8
N4+2 => N8
N4+4 => N8
N4+8 => N20
N4+16 => N20
N4+32 => N40

N4+1,
N4+2,
N4+4

N4+8,
N4+16N4+32

Key18Key18

Key31Key31

Key52Key52

Lookup(key52)

lookup(key52)

lookup(key52)

lookup(key52)

Key52

N8

N48

P-RLS Design (Cont.)
Uses Chord algorithm to store mappings of logical names
to LRC sites

Generates Chord key for a logical name by applying SHA1
hash function
Stores {logical-name, LRC} mappings on the P-RLI
successor node, called the root node of the mapping

When P-RLI node receives a query for LRC(s) that store
mappings for a logical name:

Answers the query if it contains the logical-to-LRC
mapping(s)
If not, routes query to the root node that contains the
mappings

Then query LRCs directly for mappings from logical
names to replica locations

An Example of P-RLS Network

N4

N20

N24
N40

N56

N60
N4+1,
N4+2,
N4+4

N4+8,
N4+16

N4+32

lookup(key52)

lookup(key52)

lookup(key52)

<lfn1000, rlsn://lrc1000><lfn1000, rlsn://lrc1000>

<lfn1002, rlsn://lrc1002><lfn1002, rlsn://lrc1002>

<lfn1001, rlsn://lrc1001><lfn1001, rlsn://lrc1001>

SHA1(“lfn1000”) = 18
SHA1(“lfn1001”) = 52
SHA1(“lfn1002”) = 31

<lfn1001, rlsn://lrc1001>

Finger Table
N4+1 => N8
N4+2 => N8
N4+4 => N8
N4+8 => N20
N4+16 => N20
N4+32 => N40

rli_get_lrc
(“lfn1001”)

N8

N48

P-RLS Implementation
Implemented a prototype of P-RLS
Extends RLS implementation in Globus Toolkit 3.0
Each P-RLS node consists of an unchanged LRC server and a peer-
to-peer P-RLI server
The P-RLI server implements the Chord protocol operations,
including join, update, query, successor, probing & stabilization
LRC, RLI & Chord protocols implemented on top of RLS RPC layer

Successor,
Join,

Update,
Query,

Probing
Stabilization

Chord Network

LRC
Protocol

P-RLS

RLI
Protocol

Chord
Protocol

RLS RPC Layer

LRC
Server

P-RLI
Server

R
LS C

lient A
PI

LRC
Protocol

P-RLS

RLI
Protocol

Chord
Protocol

RLS RPC Layer

LRC
Server

P-RLI
Server R

LS C
lient A

PI

P-RLS Performance Measurements
P-RLS network runs on a 16-node cluster
1000 updates (add operations) on each node, updates overwrite
existing mappings, and maximum 1000 mappings in the network
Update latencies increase on log scale with number of nodes

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of nodes

U
pd

at
e

la
te

nc
y

(m
s)

P-RLS Measurements (Cont.)
Query latencies with 100,000 and 1 million mappings
Total number of mappings has little effect on query times

Uses hash table to index mappings on each P-RLI node

Query times increase on log scale with number of nodes

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of nodes

Q
ue

ry
 la

te
nc

y
(m

s)

100,000 preloaded mappings 1,000,000 preloaded mappings

Additional P-RLS Topics

Replication schemes
Replicate mappings in P-RLS network for better reliability
Successor scheme: distributes mappings more evenly
Predecessor scheme: reduces hotspots for popular
mappings

Demonstrated:
RPC calls performed for fixed number of updates
Number of pointers to neighbors maintained by P-RLI node

Both increase on a log scale with size of P-RLS network

Stabilization message traffic

Currently, P-RLS is a research project
We will be investigating the possibility of incorporating
peer-to-peer techniques into production RLS

Ongoing and Future Work

Ongoing RLS scalability testing

Incorporating RLS into production tools, such as POOL
from the physics community

Working on a publishing tool that uses RLS that is
loosely based on the LDR system from the LIGO project

Each site compiles a list of published files to be copied
locally
Invokes transfers using RFT, registers new files in RLS
Will be included in GT4.0 release as a technical preview

Investigating peer-to-peer techniques

OREP Working Group of the Global Grid Forum working
to standardize a web services (WS-RF) interface for
replica location services

Acknowledgements

Thanks to these RLS users:
Scott Koranda and the LIGO Collaboration
Luca Cinquini and the Earth System Grid Project
Gaurang Mehta, Ewa Deelman and the Pegasus
Project
Yujun Wu and the CMS Project
Rob Gardner and the Atlas Project

Research supported in part by the DOE SciDAC Program
DE-FC02-01ER25449 (SciDAC-DATA)
DE-FC02-01ER25453 (SciDAC-ESG)

Code and documentation available: www.globus.org/rls

	Design, Performance and Scalability of a Replica Location Service
	Replica Management in Grids
	A Replica Location Service
	Talk Outline
	A Replica Location Service
	Replica Location Service In Context
	Components of RLS Implementation
	RLS Implementation Features
	Alternatives for Soft State Update Configuration
	Immediate Mode for Soft State Updates
	globus-rls-admin: Command Line Administration Tool
	Examples of globus-rls-admin commands
	globus-rls-cli: Client Command Line Tool
	Examples of simple create, add and query operations
	globus-rls-cli Attribute Functions
	globus-rli-client Bulk Operations
	Examples of Bulk Operations
	Registering a mapping using C API
	Registering a mapping using Java API
	Talk Outline
	Performance Testing
	Testing Environment
	LRC Operation Rates (MySQL Backend)
	Comparison of LRC to Native MySQL Performance
	Bulk Operation Performance
	Uncompressed Soft State Updates
	Bloom Filter Compression
	Bloom Filter Performance: Single Wide Area Soft State Update (Los Angeles to Chicago)
	Scalability of Bloom Filter Updates
	Bloom Filter Compression Supports Higher RLI Query Rates
	RLS Performance Summary
	Talk Outline
	WS-RF Data Publishing and Replication Service
	Publishing and Replication Service (Cont.)
	Talk Outline
	Motivation for a Peer-to-Peer RLS
	Peer-to-Peer Replica Location Service (P-RLS) Design
	An Example of Chord Network
	P-RLS Design (Cont.)
	An Example of P-RLS Network
	P-RLS Implementation
	P-RLS Performance Measurements
	P-RLS Measurements (Cont.)
	Additional P-RLS Topics
	Ongoing and Future Work
	Acknowledgements

